

    
      
          
            
  
Welcome to JABS documentation!

JABS (JAX Animal Behavior System) is an integrated rodent phenotyping platform to the
community for data acquisition, machine learning based behavior annotation, classifier sharing
and automated genetic analysis.

[image: JABS Overview]
Check out the Set up section for further information, including
how to Installation the project.


Note

This project is under active development.




Contents



	Set up
	Installation
	Creating the Virtual Environment

	Activating

	Deactivating

	Installing on Apple M1/M2 Silicone

	Enabling XGBoost Classifier





	Launching JABS GUI

	Preparing the JABS Project





	JABS User Guide
	The JABS Project Directory
	Example JABS project directory listing:





	Initializing  A JABS Project Directory

	The Rotta Directory
	rotta/annotations

	rotta/archive

	rotta/cache

	rotta/classifiers

	rotta/features

	rotta/predictions





	GUI
	Main Window

	Classifier Controls

	Label and Prediction Visualizations

	Menu





	Labeling
	Selecting Frames

	Applying Labels

	Keyboard Shortcuts

	Navigation Keyboard Controls

	Labeling  Controls

	Identity Gaps





	All Keyboard Shortcuts
	File Menu

	Navigation

	Labeling

	Other





	The Command Line Classifier

	File Formats
	Inference File

	Location

	Contents

	predicted_class

	probabilities

	identity_to_track









	JABS Video Tutorial

	Advanced JABS usage
	Active Learning Strategy in JABS

	Finding new videos

	Ground Truth Validation





	Introduction to the JABS downstream analysis

	2022 Short Course on the Application of Machine Learning for Automated Quantification of Behavior
	Day 4 Workshop - Training Classifiers to Classify Animal Behavior

	Purpose/Expectations
	Step 0

	Step 1

	Step 2

	Step 3
	Question 1

	Question 2

	Question 3-4





	Discussion 1

	Extra visualizations of the dataset

	Step 4

	Experiment 1

	Label Balancing
	Question 5





	Experiment 2

	Step 5
	Question 6





	Step 6
	Question 7





	Step 7

	Experiment 3

	Experiment 4

	Step 8

	Discussion 2

	Step 9

	Step 10

	Discussion 3

	Step 11

	Experiment 5















Footnotes



            

          

      

      

    

  

    
      
          
            
  
Set up


Installation


Creating the Virtual Environment

You will need to create the virtual environment before you can run the labeler
for the first time. The following commands will create a new Python3 virtual
environment, activate it, and install the required packages. Note, your python
executable may be named python or python3 depending on your installation.

cd <path-to-JABS-folder>
python -m venv jabs.venv
source jabs.venv/bin/activate
pip install -r requirements.txt







Activating

The virtual environment must be activated before you can run the labeling
interface. To activate, run the following command:

source jabs.venv/bin/activate







Deactivating

The virtual environment can be deactivated if you no longer need it:

deactivate







Installing on Apple M1/M2 Silicone

To install the app on Apple’s newer M1/M2 macbooks, the user needs to install via anaconda[#1]
using the following instructions:

conda env create -n jabs -f environment_jabs.yml
conda activate jabs
python app.py







Enabling XGBoost Classifier

The XGBoost Classifier has a dependency on the OpenMP library. This does
not ship with MacOS. XGBoost should work “out of the box” on other platforms.
On MacOS, you can install libomp with Homebrew (preferred) with the following
command brew install libomp.




Launching JABS GUI

To launch JABS from the command prompt, open a command prompt in the JABS
directory and run the following commands:

jabs.venv\Scripts\activate.bat
python app.py





If everything runs smoothly, you should see a JABS startup window like the following:

[image: alternate text]


Preparing the JABS Project

Once the JABS environment is activated, prepare your project folder. The folder should contain the videos for labeling and the corresponding pose file for each video.
Once prepared, you may either proceed to open the JABS GUI or initialize the project folder prior to working using initialize_project.py.

python initialize_project.py <project_dir>





This will generate the JABS features for the project for the default window size of 5. The argument ‘-w’ can be used to set the initial window size for feature generation.

Starting up

You can open the JABS GUI with the command:

python app.py







Footnotes



[#1]
https://www.anaconda.com/download#macos





            

          

      

      

    

  

    
      
          
            
  
JABS User Guide


The JABS Project Directory

A JABS project is a directory of video files and their corresponding pose estimation files. The first time a project directory is opened in JABS, it will create a subdirectory called “rotta”, which contains various files created by JABS to save project state, including labels and current predictions.


Example JABS project directory listing:

[image: _images/exampledir.png]



Initializing  A JABS Project Directory

The first time you open a project directory in with JABS it will create the ”
rotta” subdirectory. Features will be computed the first time the “Train” button
is clicked. This can be very time consuming depending on the number and length
of videos in the project directory.

The initialize_project.py script can also be used to initialize a project
directory before it is opened in the JABS GUI. This script checks to make sure
that a pose file exists for each video in the directory, and that the pose file
and video have the same number of frames. Then, after these basic checks, the
script will compute features for all of the videos in the project. Since
initialize_project.py can compute features for multiple videos in parallel, it
is significantly faster than doing so through the GUI during the training
process.

initialize_project.py usage:

initialize_project.py [-h] [-f] [-p PROCESSES] [-w WINDOW*SIZE]

                                                       [\-\-force\-pixel\-distances]

                                                       project\_dir





positional arguments:

project_dir

optional arguments:

-h, --help            show this help message and exit

-f, --force           recompute features even if file already exists

-p PROCESSES, --processes PROCESSES

                                              number of multiprocessing workers

-w WINDOW_SIZE        Specify window sizes to use for computing window features. Argument can

                                              be repeated to specify multiple sizes (e.g. \-w 2 \-w 5). Size is number

                                              of frames before and after the current frame to include in the window.

                                              For example, '\-w 2' results in a window size of 5 (2 frames before, 2

                                              frames after, plus the current frame). If no window size is specified,

                                              a default of 5 will be used.

 --force-pixel-distances

                                              use pixel distances when computing features even if project supports cm





example initialize_project.py command

The following command runs the initialize_project.py script to compute features

using window sizes of 2, 5, and 10. The script will use up to 8 processes for

computing features (-p8). If no -p argument is passed, initialize_project.py

will use up to 4 processes.



The Rotta Directory

JABS creates a subdirectory called “rotta” inside the project directory (this
directory is called “rotta” for historical reasons and may change prior to the
1.0.0 release of JABS). This directory contains app-specific data such as
project settings, generated features, user labels, cache files, and the latest
predictions.

project.json This file contains project settings and metadata.


rotta/annotations

This directory stores the user’s labels, stored in one JSON file per labeled
video.



rotta/archive

This directory contains archived labels. These are compressed files (gzip)
containing labels for behaviors that the user has removed from the project.
Rotta only archives labels. Trained classifiers and predictions are deleted if a
user removes a behavior from a project.



rotta/cache

Files cached by JABS to speed up performance. Some of these files may not be
portable, so this directory should be deleted if a JABS project is copied to a
different platform.



rotta/classifiers

This directory contains trained classifiers. Currently, these are stored in
Python Pickle files and should be considered non-portable.



rotta/features

This directory contains the computed features. There is one directory per
project video, and within each video directory there will be one feature
directory per identity. Feature files are usually portable, but JABS may need
to recompute the features if they were created with a different version of
JABS.



rotta/predictions

This directory contains prediction files. There will be one subdirectory per
behavior containing one prediction file per video. Prediction files are
automatically opened and displayed by JABS if they exist. Prediction files are
portable, and are the same format as the output of the command line classifier
tool (classify.py).




GUI


Main Window

[image: _images/main_window.png]

	Behavior Selection: Select current behavior to label


	Add New Behavior Button: Add new behavior label to project


	Identity Selection: Select subject mouse to label (subject can also be
selected by clicking on mouse in the video)


	Classifier Controls: Configure and train classifier. Use trained
classifier to infer classes for unlabeled frames. See “Classifier Controls”

section for more details.



	Label Summary: Counts of labeled frames and bouts for the subject identity
in the current video and across the whole project.


	Label “Behavior” Button: Label current selection of frames as showing
behavior. This button is labeled with the current behavior name.


	Label “Not Behavior” Button: Label current selection of frames as not
showing behavior This button is labeled with “Not <current behavior name>”.


	Clear Selection Button: remove labels from current selection of frames


	Toggle Select Mode Button: toggle select mode on/off (turning select mode
on will begin selecting frames starting from that point)


	Video Playlist: list of videos in the current project. Click a video name
to make it the active video.


	Video Player: Displays the current video. See “Video Player” section for
more information.


	Manual Label and Predicted Label Visualizations: see “Label
Visualizations” for more information.


	Status Bar: Displays periodic status messages.






Classifier Controls

[image: _images/classifier_controls.png]

	Train Button: Train the classifier with the current parameters. This
button is disabled until minimum number of frames have been labeled for a

minimum number of mice (increasing the cross validation k parameter increases

the minimum number of labeled mice)



	Classify Button: Infer class of unlabeled frames. Disabled until
classifier is trained. Changing classifier parameters may require retraining

before the Classify button becomes active again.



	Classifier Type Selection: Users can select from a list of supported
classifiers.


	Window Size Selection: Number of frames on each side of the current frame
to include in window feature calculations for that frame. A “window size” of 5

means that 11 frames are included into the window feature calculations for

each frame (5 previous frames, current frame, 5 following frames).



	New Window Size: Add a new window size to the project.


	Cross Validation Slider: Number of “Leave One Out” cross validation
iterations to run while training.


	Social Feature Toggle: Turn on/off social features (disabled if project
includes pose file version 2). Allows training a classifier backwards

compatible with V2 pose files using V3 or higher poses.







Label and Prediction Visualizations

[image: _images/label_viz.png]

	Manual Labels (sliding window): Displays manually assigned labels for a
sliding window of frames. The window range is the current frame +/-50 frames.

Orange indicates frames labeled as showing the behavior, blue indicates frames

labeled as not showing the behavior. Unlabeled frames are colored gray.



	Manual Labels (global view): Displays a zoomed out view of the manual
labels for the entire video


	Predicted Classes (sliding window): Displays predicted classes (if the
classifier has been run). Color opacity indicates prediction probability for

the predicted class. Manually assigned labels are also displayed with

probability of 100%.



	Predicted Class (global view): Displays a zoomed out view of the predicted
classes for the entire video.


	Sliding Window Indicator: highlights the section of the global views that
correspond to the frames displayed in the “sliding window” views.s






Menu


	JABS→About: Display About Dialog


	JABS→User Guide: Display User Guide


	JABS→Quit JABS: Quit Program


	File→Open Project: Select a project directory to open. If a project is
already opened, it will be closed and the newly selected project will be

opened.



	File→Export Training Data: Create a file with the information needed to
share a classifier. This exported file is written to the project directory and

has the form <Behavior*Name>*training*<YYYYMMDD*hhmmss>.h5. This file is

used as one input for the classify.py script.



	View→View Playlist: can be used to hide/show video playlist


	View→Show Track: show/hide track overlay for the subject. The track
overlay shows the nose position for the previous 5 frames and the next 10

frames. The nose position for the next 10 frames is colored red, and the

previous 5 frames it is a shade of pink.



	View→Overlay Pose: toggle the overlay of the pose on top of the subject
mouse


	View→Overlay Landmarks: toggle the overlay of arena landmarks over the
video.




Track Overlay Example:

[image: _images/track_overlay.png]
Pose Overlay Example:

[image: _images/pose_overlay.png]



Labeling

This section describes how a user can add or remove labels. Labels are always
applied to the subject mouse and the current subject can be changed at any time.
A common way to approach labeling is to scan through the video for the behavior
of interest, and then when the behavior is observed select the mouse that is
showing the behavior. Scan to the start of the behavior, and begin selecting
frames. Scan to the end of the behavior to select all of the frames that belong
to the bout, and click the label button.


Selecting Frames

When “Select Mode” is activated, JABS begins a new selection starting at that
frame. The current selection is from the selection start frame through the
current frame. Applying a label, or removing labels from the selection clears
the current selection and leaves “Select Mode”.

The current selection range is shown on the “Manual Labels” display:

[image: _images/selecting_frames.png]
Clicking the “Select Frames” button again or pressing the Escape key will unselect the frames and leave select mode without making a change to the labels.



Applying Labels

The “Label Behavior Button” will mark all of the frames in the current selection

as showing the behavior. The “Label Not Behavior” button will mark all of the

frames in the current selection as not showing the behavior. Finally, the “Clear

Labels” button will remove all labels from the currently selected frames.

The “Label Behavior Button” will mark all of the frames in the current selection
as showing the behavior. The “Label Not Behavior” button will mark all of the
frames in the current selection as not showing the behavior. Finally, the “Clear
Labels” button will remove all labels from the currently selected frames.



Keyboard Shortcuts

Using the keyboard controls can be the fastest way to label.



Navigation Keyboard Controls

The arrow keys can be used for stepping through video. The up arrow skips ahead
10 frames, and the down arrow skips back 10 frames. The right arrow advances one
frame, and the left arrow goes back one frame.



Labeling  Controls

The z, x, and c keys can be used to apply labels.

If in select mode:


	z: label current selection as “behavior”


	x: clear labels from current selection


	c: label current selection as “not behavior”




If not in select mode:


	z, x, c: start selecting frames.






Identity Gaps

Identities can have gaps if the mouse becomes obstructed or the pose estimation

failed for those frames. In the manual label visualization, these gaps are

indicated with a pattern fill instead of the solid gray/orange/blue colors. In

the predicted class visualization, the gaps are colored white.

[image: _images/identity_gaps.png]



All Keyboard Shortcuts


File Menu

Actions under the file menu have keyboard shortcuts.


	Control Q (Command Q on Mac) quit JABS


	Control T (Command T on Mac) export training data






Navigation


	left arrow: move to previous frame


	right arrow: move to next frame


	up arrow: move forward 10 frames (TODO: make configurable)


	down arrow: move back 10 frames (TODO: make configurable)


	space bar: toggle play/pause






Labeling

while in select mode:


	z: label current selection <behavior>and leave select mode


	x: clear current selection labels and leave select mode


	c: label current selection not <behavior> and leave select mode


	Escape: exit select mode without applying/clearing labels for current
selection




while not in select mode:


	z, x, c: enter select mode






Other


	t: toggle track overlay for subject


	p: toggle pose overlay for subject


	l: toggle landmark overlay







The Command Line Classifier

JABS includes a script called classify.py, which can be used to classify a

single video from the command line.

usage: classify.py COMMAND COMMAND_ARGS

commands:

classify   classify a pose file

train      train a classifier that can be used to classify multiple pose files

See `classify.py COMMAND --help` for information on a specific command.





 usage: classify.py classify [-h] [--random-forest | --gradient-boosting | --xgboost]

                                                       (\-\-training TRAINING | \-\-classifier CLASSIFIER) \-\-input\-pose

                                                       INPUT\_POSE \-\-out\-dir OUT\_DIR [\-\-fps FPS]

                                                       [\-\-feature\-dir FEATURE\_DIR]

 optional arguments:

   -h, --help            show this help message and exit

   --fps FPS             frames per second, default=30

   --feature-dir FEATURE_DIR

                                                 Feature cache dir. If present, look here for features before computing.

                                                 If features need to be computed, they will be saved here.

 required arguments:

   --input-pose INPUT_POSE

                                               input HDF5 pose file (v2, v3, or v4).

   --out-dir OUT_DIR     directory to store classification output

 optionally override the classifier specified in the training file:

Ignored if trained classifier passed with --classifier option.

(the following options are mutually exclusive):

 --random-forest       Use Random Forest

 --gradient-boosting   Use Gradient Boosting

 --xgboost             Use XGBoost





Classifier Input (one of the following is required):



	--training TRAINING

	Training data h5 file exported from JABS





—classifier CLASSIFIER






Classifier file produced from the classify.py train command







usage: classify.py train [-h] [--random-forest | --gradient-boosting | --xgboost]

                                               training\_file out\_file

positional arguments:

  training_file        Training h5 file exported by JABS

  out_file             output filename

optional arguments:

  -h, --help           show this help message and exit

optionally override the classifier specified in the training file:

 (the following options are mutually exclusive):

  --random-forest      Use Random Forest

  --gradient-boosting  Use Gradient Boosting

  --xgboost            Use XGBoost





Note: xgboost may be unavailable on Mac OS if libomp is not installed.

See classify.py classify –help output for list of classifiers supported in

the current execution environment.

Note: fps parameter is used to specify the frames per second (used for scaling

time unit for speed and velocity features from “per frame” to “per second”).



File Formats

This section documents the format of JABS output files that may be needed for

downstream analysis.


Inference File

An inference file represents the predicted classes for each identity present in one video file.



Location

The prediction files are saved in <JABS project dir>/rotta/predictions/<behavior*name>/<video*name>.h5 if they were generated by the JABS GUI. The classify.py script saves inference

files in <out-dir>/<behavior*name>/<video*name>.h5



Contents

The H5 file contains one group, called “predictions”. This group contains three

datasets

predictions


	predicted_class


	probabilities


	identity_to_track




The file also has some attributes:


	version: This attribute contains an integer version number, and will be
incremented if an incompatible change is made to the file format.


	source*pose*major_version: integer containing the major version of the pose
file that was used for the prediction






predicted_class


	dtype: 8-bit integer


	shape: #identities x #frames




This dataset contains the predicted class. Each element contains one of three

values:


	0: “not behavior”


	1: “behavior”


	-1: “identity not present in frame”.






probabilities


	dtype: 32-bit floating point


	shape: #identities x #frames




This dataset contains the probability (0.0-1.0) of each prediction. If there is
no prediction (the identity doesn’t exist at a given frame) then the prediction
probability is 0.0.



identity_to_track


	dtype: 32-bit integer


	shape: #identities x #frames




This dataset maps each JABS-assigned identity (Pose version 3) back to the
original track ID from the pose file at each frame. -1 indicates the identity
does not map to a track for that frame. For Pose File Version 4 and greater,
JABS uses the identity assignment contained in the pose file. For pose version
2, there will be exactly one identity (0).




Footnotes
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Advanced JABS usage


Active Learning Strategy in JABS

Active Learning is a semi-supervised Machine Learning (ML) strategy. The basic principle is that the data set and the model are built simultaneously through a ML-human loop. The labeled data is incrementally added to the model, retraining it. The retrained model is used to synthetically label the unlabeled data set. The labeler is then able to pick the most useful unlabeled data to label next (Correcting mistakes). Since not all datapoints are equally valuable, Active Learning can lower the amount of labels needed to produce the best results so it is especially suited for videos.

Therefore, when you are labeling in JABS, employ an iterative process of labeling a couple videos, training+predicting, and then correcting some more labels, then training and predicting again. This will cut down on the total amount of labels needed to train a strong classifier by allowing you to only label frames which are most useful to the classifier.



Finding new videos

If you have labelled most of the videos in your project and are not satisfied with the amount of examples of that behavior in the project, you can use a weaker classifier trained on that project to find new videos to add to your project. Use your current classifier to infer on a larger available dataset. The videos which have the most predictions for your behavior can be added to your folder for more behavior examples and more examples of mistakes to correct.



Ground Truth Validation

Once you have a classifier you want to validate, it may be helpful to densely label a set of ground truth videos to test your classifier on. The simplest way to validate is a frame-based approach of counting the amount of true positives, false positives, true negatives, and false negatives for your classifier. You can use these to calculate Precision, Recall, Accuracy, and F1 beta.

However, it is important to note that while machine learning techniques are often evaluated using frame accuracies, behaviorists may find detecting the same bouts of behavior more important than the exact starting and ending frame of these bouts. Even between two humans labeling the same behavior, there are unavoidable discrepancies in the exact frames of the behavior. Consider the folling example where 4 annotators labeled grooming bouts:

[image: _images/ethogrooming.png]
Though many of the same bouts are found by all annotators, taking a frame-based approach may cause the agreement between annotators to seem deceptively low. Therefore, you may wish to pursue a bout-based agreement for validation.
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Introduction to the JABS downstream analysis


	Importing necessary libraries




We are just going to import basic python libraries to help us analyze predicted behavior


[7]:





# auto reload
%load_ext autoreload
%autoreload 2








[8]:





from stuff import *
from ipywidgets import FloatSlider, interactive, fixed








	Visualizing the Ethogram for a sample prediction





[14]:





# Reading the sample file
df = load_file('data/sample_file.h5')
int_plot = interactive(draw_ethogram, df=fixed(df['Class'].values.astype(int)),i=FloatSlider(min=1, max=100, step=1), save_fig=False);
int_plot



















	Frame counting statistics
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2022 Short Course on the Application of Machine Learning for Automated Quantification of Behavior


Day 4 Workshop - Training Classifiers to Classify Animal Behavior



Purpose/Expectations

The contents of this course will grant insight into important
characteristics while trainig behavioral classifiers. The usage of JABS
code in this tutorial is strictly limited to reading in project
annotations and feature vectors.

Within this tutorial, you will be provided with 2 example annotated
projects that contain sparse labels that will be used for training and
dense labels that you will use for final evaluation of your best model.

Expected knowledge before coming doing the course


	Familiarity with animal pose data and frame-level features derived from that data


	Basic python experience


	Some numpy experience


	Familiarity with generating plots in python (preference to using plotnine, which is ggplot-style syntax)




Expected takeaways of the course


	Learn the core process to train a frame-wise predictor of behavior


	Become familiar with key components to take into account when training these types of classifiers


	Gain insight for some of the design decision considerations our group integrated into the JABS software




This is a static web-version of the ipython notebook found here[#1].


Step 0

Import a lot of libraries that we will be using in this tutorial

import numpy as np
import pandas as pd
from itertools import chain
import sklearn
# JABS install directory
import sys
sys.path.append('JABS-behavior-classifier/')
from src.project import Project
from src.classifier import Classifier
# Plotting library
import plotnine as p9
%matplotlib notebook







Step 1

Import the project annotations that we are providing These annotations
were created using our JABS software, so we can use that library to
extract the annotations in python

project = Project('JABS-Training-Data/')
# We're picking the first behavior in the project. Each JABS project can contain multiple behavior annotations.
behavior = project.load_metadata()['behaviors'][0]
# Here we read in the all important information for all labels
training_data = project.get_labeled_features(behavior, window_size=5, use_social_features=True)
# Since this is more of an internal format, we can separate out the data to be more easily accessible
all_labels = training_data[0]['labels']
annotation_animal = training_data[0]['groups']
annotation_animal_names = [training_data[1][x]['video'] + ' animal ' + str(training_data[1][x]['identity']) for x in annotation_animal]
feature_names = training_data[0]['column_names']
all_features = Classifier().combine_data(training_data[0]['per_frame'],training_data[0]['window'])





Also extract some bout-level groups, something that JABS doesn’t
normally do

raw_annotations = [project.load_video_labels(training_data[1][x]['video']).as_dict()['labels'][str(training_data[1][x]['identity'])][behavior] for x in np.unique(annotation_animal)]
num_animals_annotated = len(raw_annotations)
bout_data = [[np.repeat(animal_idx+bout_idx*num_animals_annotated, bout['end']-bout['start']+1) for bout_idx, bout in enumerate(animal_data)] for animal_idx, animal_data in enumerate(raw_annotations)]
bout_data = np.concatenate(list(chain.from_iterable(bout_data)))





At this point we have extracted feature data and annotations from a JABS
project. Here’s a description of important variables:


	all_features contains the matrix of all the features. The first dimension is the frame index and the second dimension is the feature index.


	all_labels contains a vector of labels. 0 = not behavior, 1 = behavior


	annotation_animal contains a vector with a unique number for each animal


	bout_data contains a vector with a unique bout number for each bout annotated * feature_names contains the name of each feature. Each value here is the name of the 2nd dimension of the feature vector.






Step 2

Read in the held-out test set

This set is distinct from the validation dataset we’ll be splitting in 2
key factors: 1. This set will be held out and should not be used in
tuning model parameters. 2. It is also densely annotated (all frames
contain a label), rather than the sparse annotation provided for
training.

test_project = Project('JABS-Test-Data/')
test_data = test_project.get_labeled_features(behavior, window_size=5, use_social_features=True)
test_labels = test_data[0]['labels']
test_animals = test_data[0]['groups']
test_features = Classifier().combine_data(test_data[0]['per_frame'],test_data[0]['window'])







Step 3

Inspect characteristics of the dataset Since the annotations are located
in all_labels, we should inspect some characteristics of it


Question 1

How many annotations do we have?

print(len(all_labels))





3407







Question 2

How many labels do we have of each class: 0 (not-behavior) and 1
(behavior)

num_not_behavior = sum(all_labels==0)
print(num_not_behavior)
num_behavior = sum(all_labels==1)
print(num_behavior)





2294
1113







Question 3-4

How many bouts were annotated?

How many animals were annotated?

num_bouts = len(np.unique(bout_data))
print(num_bouts)
num_animals = len(np.unique(annotation_animal))
print(num_animals)





235
21








Discussion 1

What are characteristics of the dataset that may be important about
creating a good model?

Hypotheticals to think about:


	If you have a rare behavior, is it okay to label a lot more “not behavior”? What might the model try and do to improve accuracy if that ratio becomes 1000:1?


	If one animal tends to express the behavior more than another, is it okay to provide more labels on from that individual?




Discussion on the balancing of data

Rules of thumb:


	Balanced annotations tend to create better classifiers. The higher the degree of imbalance, the more likely the classifier will just cheat and learn to predict one state over another. Generally, you should aim to not have more than a 2:1 ratio, but performance only particularly degrades when worse than a 5:1 or 10:1 ratio. Re-sampling can address this.


	More bouts is generally better, because within-bout annotations have high temporal correlation and are therefore less informative for making decisions that generalize in favor of making decisions specific to that bout.


	More animals is generally better, because some animals may express behavior in a more unique style. Having more animals enables better generalization. We’ve observed in the past that limiting to specific strains of animals in training hurts generalization to different strains. This keys in on adequately sampling from the population variation of the experiments you plan on running inferences on - include at least some of each genotype.






Extra visualizations of the dataset

plotting_df = pd.DataFrame({'annotations':all_labels, 'bout':bout_data, 'animal':annotation_animal, 'annotation_idx':np.arange(len(all_labels))})
# Histogram of the class labels
plot_labels = p9.ggplot() + \
        p9.geom_histogram(mapping=p9.aes(x='factor(annotations)'), data=plotting_df, bins=2, fill='#9e9e9e', color='#000000', size=2) + \
        p9.labs(title='Class Labels', x='Class', y='Count') + \
        p9.scale_x_discrete(labels=['Not-Behavior',behavior]) + \
        p9.theme_bw()
plot_labels.draw().show()

# Class labels per-animal
plot_animals = p9.ggplot() + \
        p9.geom_histogram(mapping=p9.aes(x='factor(annotations)'), data=plotting_df, bins=2, fill='#9e9e9e', color='#000000', size=2) + \
        p9.labs(title='Class Labels by Animal', x='Class', y='Count') + \
        p9.scale_x_discrete(labels=['Not-Behavior',behavior]) + \
        p9.facet_wrap('animal') + \
        p9.theme_bw()
plot_animals.draw().show()





Example Output:
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The JABS Interface

Once the GUI has launched, you can Click the ‘File’ tab and select ‘Open Project’ and open your project folder. This will load the videos and prompt you to enter the name of the behavior you want to label. (You will be able to add multiple other behaviors for labeling as desired.)
On the left hand panel are the project videos. You can select the video to label by clicking on it. If the video has multiple mice, you can select the mouse identity to label using the dropdown menu for Subject Identity on the right hand of the GUI.

[image: alternate text]
You can play and pause the video either by using the play button on the GUI or by pressing the space bar on your keyboard. You can scan frame by frame through the video by pressing the left and right arrow keys to go backwards and forwards, respectively. You can scan more quickly through the video 10 frames at a time using the up and down arrow keys to go backwards and forwards, respectively.

[image: alternate text]


Labeling in JABS

To label a set of frames, click the button ‘Select Frames’ in the Labeling panel at the bottom right corner of the GUI. Then select the frames to be labeled either by playing and pausing, going frame by frame, or by going 10 frames at a time. Once you have made your selection, you can click the yellow button with the behavior name to label the frames as the behavior. To label the frames as Not behavior, click the blue button. To remove a label from frames, click the ‘Select Frames’ button, select the frames you wish to unlabel, and then click the ‘Clear Label’ button.

[image: _images/labeling.png]


Training the Classifier

In order to train a classifier, at least 20 frames of behavior and 20 frames of not behavior must be labeled for at least 2 videos.

[image: _images/labels.png]
Adjust the ‘Cross validation k’ slider for the amount of videos that have enough labels (the ‘Train’ button should be selectable). You can change the Classifier type between Random Forest, Gradient Boosting, and XGBoost with the drop down menu.
You can change the window size for the feature generation either by the drop down menu showing the available calculated window sizes, or by adding a new window size by clicking the ‘+’ button next to the drop down menu. Window sizes are statistical measures of all the per-frame features inside that window. For example, if the window size is 5, JABS looks at 5 frames before and after a labeled frame, computes window features using all those per-frame features, and then trains using window features. For a shorter behavior, the ideal window size may be small, while for a longer behavior, it may be large.

[image: _images/train.png]
Once you are ready to train the classifier, click the train button. If the features for the selected window size have not been calculated before hand, this process may take longer. Once training has finished, the command line output will look like this:

[image: _images/commandline.png]
You have now trained your first classifier. The Summary table contains accuracy measures for the k-fold cross validation on each video with enough labels. It then summarizes the mean accuracy and f1beta scores for the video set.

Now, you can classify the frames in your video by pressing the ‘Classify’ button in the GUI. The bottom row of the labels shows the classifier’s prediction of behavior for each frame.

[image: alternate text]
You should now go through the classifier’s predictions and fix false positives or false negatives you come across by labeling those frames correctly. Once you’ve labeled some more frames, you can retrain the classifier and then reclassify to see the new classifier’s predictions. You can then continue to iteratively correct, train, and predict until you are satisfied with your classifier. You can adjust window size and classifier type to see what gives you the best performance. Once you are satisfied with the classifier you can export the training file to infer on other videos. Click on the ‘File’ tab and then ‘Export Training Data’. This will export an hdf5 file into your project folder named ‘<behavior_name>_training_<date_and_time>.h5’. This training file can be used to classify behavior in other videos.

In order to classify behavior in other videos not in the project folder, open up the command line and set your working directory to the JABS-behavior-classifier folder and activate the environment.

source jabs.venv/bin/activate
#for window:
jabs.venv\Scripts\activate.bat





To classify the video :

python classify.py --training <Training_data_file> --input-pose <Posefile_for_video> --out-dir <Directory_to_save_to>





This will save the inference file in the directory listed for ‘–out-dir’.
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JABS Tutorial



Purpose/Expectations

The contents of this course will grant insight into important characteristics while trainig behavioral classifiers. The usage of JABS code in this tutorial is strictly limited to reading in project annotations and feature vectors.

Within this tutorial, you will be provided with 2 example annotated projects that contain sparse labels that will be used for training and dense labels that you will use for final evaluation of your best model.

Expected knowledge before coming doing the course * Familiarity with animal pose data and frame-level features derived from that data * Basic python experience * Some numpy experience * Familiarity with generating plots in python (preference to using plotnine, which is ggplot-style syntax)

Please feel free to use the “solution” links when the programming experience is above your knowledge.

Expected takeaways of the course * Learn the core process to train a frame-wise predictor of behavior * Become familiar with key components to take into account when training these types of classifiers * Gain insight for some of the design decision considerations our group integrated into the JABS software


Step 0

Import a lot of libraries that we will be using in this tutorial


[1]:





import numpy as np
import pandas as pd
from itertools import chain
import sklearn
# JABS install directory
import sys
sys.path.append('JABS-behavior-classifier/')
from src.project import Project
from src.classifier import Classifier
# Plotting library
import plotnine as p9
%matplotlib notebook













---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
/tmp/ipykernel_974/922278968.py in <module>
      2 import pandas as pd
      3 from itertools import chain
----> 4 import sklearn
      5 # JABS install directory
      6 import sys

ModuleNotFoundError: No module named 'sklearn'








Step 1

Import the project annotations that we are providing These annotations were created using our JABS software, so we can use that library to extract the annotations in python


[2]:





project = Project('JABS-Training-Data/')
# We're picking the first behavior in the project. Each JABS project can contain multiple behavior annotations.
behavior = project.load_metadata()['behaviors'][0]
# Here we read in the all important information for all labels
training_data = project.get_labeled_features(behavior, window_size=5, use_social_features=True)
# Since this is more of an internal format, we can separate out the data to be more easily accessible
all_labels = training_data[0]['labels']
annotation_animal = training_data[0]['groups']
annotation_animal_names = [training_data[1][x]['video'] + ' animal ' + str(training_data[1][x]['identity']) for x in annotation_animal]
feature_names = training_data[0]['column_names']
all_features = Classifier().combine_data(training_data[0]['per_frame'],training_data[0]['window'])













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/2224683103.py in <module>
----> 1 project = Project('JABS-Training-Data/')
      2 # We're picking the first behavior in the project. Each JABS project can contain multiple behavior annotations.
      3 behavior = project.load_metadata()['behaviors'][0]
      4 # Here we read in the all important information for all labels
      5 training_data = project.get_labeled_features(behavior, window_size=5, use_social_features=True)

NameError: name 'Project' is not defined






Also extract some bout-level groups, something that JABS doesn’t normally do


[3]:





raw_annotations = [project.load_video_labels(training_data[1][x]['video']).as_dict()['labels'][str(training_data[1][x]['identity'])][behavior] for x in np.unique(annotation_animal)]
num_animals_annotated = len(raw_annotations)
bout_data = [[np.repeat(animal_idx+bout_idx*num_animals_annotated, bout['end']-bout['start']+1) for bout_idx, bout in enumerate(animal_data)] for animal_idx, animal_data in enumerate(raw_annotations)]
bout_data = np.concatenate(list(chain.from_iterable(bout_data)))













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/794038532.py in <module>
----> 1 raw_annotations = [project.load_video_labels(training_data[1][x]['video']).as_dict()['labels'][str(training_data[1][x]['identity'])][behavior] for x in np.unique(annotation_animal)]
      2 num_animals_annotated = len(raw_annotations)
      3 bout_data = [[np.repeat(animal_idx+bout_idx*num_animals_annotated, bout['end']-bout['start']+1) for bout_idx, bout in enumerate(animal_data)] for animal_idx, animal_data in enumerate(raw_annotations)]
      4 bout_data = np.concatenate(list(chain.from_iterable(bout_data)))

NameError: name 'annotation_animal' is not defined






At this point we have extracted feature data and annotations from a JABS project. Here’s a description of important variables: * all_features contains the matrix of all the features. The first dimension is the frame index and the second dimension is the feature index. * all_labels contains a vector of labels. 0 = not behavior, 1 = behavior * annotation_animal contains a vector with a unique number for each animal * bout_data contains a vector with a unique bout number for
each bout annotated * feature_names contains the name of each feature. Each value here is the name of the 2nd dimension of the feature vector.



Step 2

Read in the held-out test set

This set is distinct from the validation dataset we’ll be splitting in 2 key factors: 1. This set will be held out and should not be used in tuning model parameters. 2. It is also densely annotated (all frames contain a label), rather than the sparse annotation provided for training.


[4]:





test_project = Project('JABS-Test-Data/')
test_data = test_project.get_labeled_features(behavior, window_size=5, use_social_features=True)
test_labels = test_data[0]['labels']
test_animals = test_data[0]['groups']
test_features = Classifier().combine_data(test_data[0]['per_frame'],test_data[0]['window'])













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/397282164.py in <module>
----> 1 test_project = Project('JABS-Test-Data/')
      2 test_data = test_project.get_labeled_features(behavior, window_size=5, use_social_features=True)
      3 test_labels = test_data[0]['labels']
      4 test_animals = test_data[0]['groups']
      5 test_features = Classifier().combine_data(test_data[0]['per_frame'],test_data[0]['window'])

NameError: name 'Project' is not defined








Step 3

Inspect characteristics of the dataset Since the annotations are located in all_labels, we should inspect some characteristics of it


Question 1

How many annotations do we have? Solution[#1]


[ ]:















Question 2

How many labels do we have of each class: 0 (not-behavior) and 1 (behavior) Solution[#2]


[5]:





num_not_behavior = sum(all_labels==0)
print(num_not_behavior)















---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/1681460720.py in <module>
----> 1 num_not_behavior = sum(all_labels==0)
      2 print(num_not_behavior)
      3

NameError: name 'all_labels' is not defined








Question 3-4

How many bouts were annotated?

How many animals were annotated? Solution[#3]


[6]:





num_bouts = len(np.unique(bout_data))
print(num_bouts)















---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/1714932509.py in <module>
----> 1 num_bouts = len(np.unique(bout_data))
      2 print(num_bouts)
      3

NameError: name 'bout_data' is not defined









Discussion 1

What are characteristics of the dataset that may be important about creating a good model?

Hypotheticals to think about: * If you have a rare behavior, is it okay to label a lot more “not behavior”? What might the model try and do to improve accuracy if that ratio becomes 1000:1? * If one animal tends to express the behavior more than another, is it okay to provide more labels on from that individual?

Discussion Notes[#4]



Extra visualizations of the dataset


[7]:





plotting_df = pd.DataFrame({'annotations':all_labels, 'bout':bout_data, 'animal':annotation_animal, 'annotation_idx':np.arange(len(all_labels))})
# Histogram of the class labels
plot_labels = p9.ggplot() + \
        p9.geom_histogram(mapping=p9.aes(x='factor(annotations)'), data=plotting_df, bins=2, fill='#9e9e9e', color='#000000', size=2) + \
        p9.labs(title='Class Labels', x='Class', y='Count') + \
        p9.scale_x_discrete(labels=['Not-Behavior',behavior]) + \
        p9.theme_bw()
plot_labels.draw().show()

# Class labels per-animal
plot_animals = p9.ggplot() + \
        p9.geom_histogram(mapping=p9.aes(x='factor(annotations)'), data=plotting_df, bins=2, fill='#9e9e9e', color='#000000', size=2) + \
        p9.labs(title='Class Labels by Animal', x='Class', y='Count') + \
        p9.scale_x_discrete(labels=['Not-Behavior',behavior]) + \
        p9.facet_wrap('animal') + \
        p9.theme_bw()
plot_animals.draw().show()













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/2506972844.py in <module>
----> 1 plotting_df = pd.DataFrame({'annotations':all_labels, 'bout':bout_data, 'animal':annotation_animal, 'annotation_idx':np.arange(len(all_labels))})
      2 # Histogram of the class labels
      3 plot_labels = p9.ggplot() + \
      4         p9.geom_histogram(mapping=p9.aes(x='factor(annotations)'), data=plotting_df, bins=2, fill='#9e9e9e', color='#000000', size=2) + \
      5         p9.labs(title='Class Labels', x='Class', y='Count') + \

NameError: name 'all_labels' is not defined








Step 4

Splitting the training data into train and validation

We will be using the training portion of the data to allow the algorithm to learn the best parameters to make predictions

The validation will be held out to evaluate performance of the classifier

Here we define a handful of functions that accepts the features and labels and returns the split data


[8]:





# Defining functions to split the data
# Here we're going to manually shuffle and split
# Naive approach 1 - random sorted split (deterministic)
def split_data(features, labels, percent_train=0.75):
    available_examples = np.arange(len(labels))
    train_idxs = available_examples[:int(len(labels)*percent_train)]
    test_idxs = available_examples[int(len(labels)*percent_train):]
    # Separate out the training data
    train_features = features[train_idxs]
    train_labels = labels[train_idxs]
    # Separate out the validation data
    valid_features = features[test_idxs]
    valid_labels = labels[test_idxs]
    return train_features, train_labels, valid_features, valid_labels








[9]:





# Naive approach 2 - random shuffle
def random_split_data(features, labels, percent_train=0.75):
    available_examples = np.arange(len(labels))
    np.random.shuffle(available_examples)
    train_idxs = available_examples[:int(len(labels)*percent_train)]
    test_idxs = available_examples[int(len(labels)*percent_train):]
    # Separate out the training data
    train_features = features[train_idxs]
    train_labels = labels[train_idxs]
    # Separate out the validation data
    valid_features = features[test_idxs]
    valid_labels = labels[test_idxs]
    return train_features, train_labels, valid_features, valid_labels








[10]:





# Using sklearn to split the data
# Stratified splitting:
# Attempts to preserve the train/valid class representations
def sklearn_stratified_split(features, labels, percent_train=0.75):
    train_idxs, test_idxs = list(sklearn.model_selection.StratifiedShuffleSplit(n_splits=1, train_size=percent_train).split(features, labels))[0]
    # Separate out the training data
    train_features = features[train_idxs]
    train_labels = labels[train_idxs]
    # Separate out the validation data
    valid_features = features[test_idxs]
    valid_labels = labels[test_idxs]
    return train_features, train_labels, valid_features, valid_labels








[11]:





# Group splitting
# Leaves one group out within the split
# Note that this one group that is left out is not guaranteed to contain both labels, so sometime performance will contain things like division by 0.
def sklearn_logo_split(features, labels, groups, percent_train=0.75):
    train_idxs, test_idxs = list(sklearn.model_selection.LeaveOneGroupOut().split(features, labels, groups))[0]
    # Separate out the training data
    train_features = features[train_idxs]
    train_labels = labels[train_idxs]
    # Separate out the validation data
    valid_features = features[test_idxs]
    valid_labels = labels[test_idxs]
    return train_features, train_labels, valid_features, valid_labels








[12]:





# Group splitting #2
# Leaves multiple groups out with a target percent annotations that fall into the training set
def sklearn_group_split(features, labels, groups, percent_train=0.75):
    train_idxs, test_idxs = list(sklearn.model_selection.GroupShuffleSplit(n_splits=1, train_size=percent_train).split(features, labels, groups))[0]
    # Separate out the training data
    train_features = features[train_idxs]
    train_labels = labels[train_idxs]
    # Separate out the validation data
    valid_features = features[test_idxs]
    valid_labels = labels[test_idxs]
    return train_features, train_labels, valid_features, valid_labels









Experiment 1

Inspect/Visualize the effects of different splits of the annotations


[13]:





# Random split
train_features, train_labels, valid_features, valid_labels = random_split_data(all_features, all_labels)
# Stratified split
#train_features, train_labels, valid_features, valid_labels =sklearn_stratified_split(all_features, all_labels)
# Leave one group out split (bout)
#train_features, train_labels, valid_features, valid_labels = sklearn_logo_split(all_features, all_labels, bout_data)
# Leave one group out split (animal)
#train_features, train_labels, valid_features, valid_labels = sklearn_logo_split(all_features, all_labels, annotation_animal)
# Leave multiple groups out (bouts)
#train_features, train_labels, valid_features, valid_labels = sklearn_group_split(all_features, all_labels, bout_data)
# Leave multiple groups out (animals)
#train_features, train_labels, valid_features, valid_labels = sklearn_group_split(all_features, all_labels, annotation_animal)

train_df = pd.DataFrame({'state':'train', 'label':train_labels})
valid_df = pd.DataFrame({'state':'valid', 'label':valid_labels})
plot_df = pd.concat([train_df, valid_df])

split_plot = p9.ggplot(plot_df) + \
    p9.geom_bar(p9.aes(x='state', fill='factor(label)')) + \
    p9.theme_bw()

split_plot.draw().show()













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/127396501.py in <module>
      1 # Random split
----> 2 train_features, train_labels, valid_features, valid_labels = random_split_data(all_features, all_labels)
      3 # Stratified split
      4 #train_features, train_labels, valid_features, valid_labels =sklearn_stratified_split(all_features, all_labels)
      5 # Leave one group out split (bout)

NameError: name 'all_features' is not defined








Label Balancing

Since we’re aware that we have roughly a 3x more annotations for not-behavior, we should probably consider balancing the labels

We can take multiple approaches to creating a more balanced dataset: 1. Downsampling: Discard data from the class which has the most annotation until the labels are balanced 2. Upsampling: Duplicate data from the class which has the least annotation until the labels are balanced


[14]:





# Downsamples the featuers, labels, and groups such that the labels are balanced
def downsample_balanced(features, labels, groups=None):
    _, label_counts = np.unique(labels, return_counts=True)
    # Since we want to discard samples, we should pick the smaller of the 2 class sizes
    smallest_class_count = np.min(label_counts)
    class_0_idxs = np.where(labels==0)[0]
    class_1_idxs = np.where(labels==1)[0]
    # Here we can randomly choose without replacement examples
    class_0_idxs = np.random.choice(class_0_idxs, smallest_class_count, replace=False)
    class_1_idxs = np.random.choice(class_1_idxs, smallest_class_count, replace=False)
    selected_samples = np.sort(np.concatenate([class_0_idxs, class_1_idxs]))
    new_features = features[selected_samples,:]
    new_labels = labels[selected_samples]
    if groups is not None:
        new_groups = groups[selected_samples]
        return new_features, new_labels, new_groups
    else:
        return new_features, new_labels, None








Question 5

Write a function to upsample the data Solution[#5]


[15]:





# Downsamples the featuers, labels, and groups such that the labels are balanced
def upsample_balanced(features, labels, groups=None):
    _, label_counts = np.unique(labels, return_counts=True)
    # If for downsampling, we want the smallest class count, what do we want to use for upsampling?

    class_0_idxs = np.where(labels==0)[0]
    class_1_idxs = np.where(labels==1)[0]
    # Decide how to sample the data here

    selected_samples = np.sort(np.concatenate([class_0_idxs, class_1_idxs]))
    new_features = features[selected_samples,:]
    new_labels = labels[selected_samples]
    if groups is not None:
        new_groups = groups[selected_samples]
        return new_features, new_labels, new_groups
    else:
        return new_features, new_labels, None










Experiment 2

Inspect/Visualize the effects of downsampling the annotations


[16]:





# Downsample
balanced_features, balanced_labels, balanced_groups = downsample_balanced(all_features, all_labels, annotation_animal)
# Upsample
#balanced_features, balanced_labels, balanced_groups = upsample_balanced(all_features, all_labels, annotation_animal)
train_features, train_labels, valid_features, valid_labels = sklearn_group_split(balanced_features, balanced_labels, balanced_groups)
train_df = pd.DataFrame({'state':'train', 'label':train_labels})
valid_df = pd.DataFrame({'state':'valid', 'label':valid_labels})
plot_df = pd.concat([train_df, valid_df])

split_plot = p9.ggplot(plot_df) + \
    p9.geom_bar(p9.aes(x='state', fill='factor(label)')) + \
    p9.theme_bw()

split_plot.draw().show()













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/4165790136.py in <module>
      1 # Downsample
----> 2 balanced_features, balanced_labels, balanced_groups = downsample_balanced(all_features, all_labels, annotation_animal)
      3 # Upsample
      4 #balanced_features, balanced_labels, balanced_groups = upsample_balanced(all_features, all_labels, annotation_animal)
      5 train_features, train_labels, valid_features, valid_labels = sklearn_group_split(balanced_features, balanced_labels, balanced_groups)

NameError: name 'all_features' is not defined








Step 5

Train classifiers

For the purposes of this tutorial, we will be relying on using SKLearn to training classifiers.

Good recommended classifiers: 1. Adaboost[#6] 2. Random Forest[#7]


[17]:





# Define how to train a decision tree classifier
def train_dt_classifier(train_features, train_labels):
    # Create a classifier object
    # Note here we are using a bunch of default values that SKLearn has picked for us.
    # Check the documentation of the various parameters you can adjust for the decision trees:
    # https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn-tree-decisiontreeclassifier
    classifier = sklearn.tree.DecisionTreeClassifier()
    # Train the classifier on our training features + labels
    classifier = classifier.fit(train_features, train_labels)
    return classifier








Question 6

Write functions to train an adaboost and random forest classifier Solution[#8]


[18]:





# Adaboost Classifier
def train_ada_classifier(train_features, train_labels):

    return classifier








[19]:





# Random forest Classifier
def train_rf_classifier(train_features, train_labels):

    return classifier










Step 6

Frame-wise evaluation of the classifier

Since our classifier predicts for every frame, we can estimate its performance by comparing the held-out validation data with the predictions it is making.

For evaluating classifier performance, we must first calculate the 4 values of a confusion matrix: 1. True positives (TP): When both the classifier and the ground truth assign “behavior” 2. False negatives (FN): When the classifier predicts “not behavior” and the ground truth assigns “behavior” 3. False positives (FP): When the classifier predicts “behavior” and the ground truth assigns “not behavior” 4. True negatives (TN): When both the classifier and the ground truth assign “not behavior”

From these, we can calculate 4 additional useful performance metrics for describing the classifier. Wikipedia has a good article[#9] outlining these as well as more, but these are the 4 most common. 1. Accuracy: The total number of predictions that were correct. * (TP+TN)/(TP+TN+FP+FN) 2. Precision: Of the predictions for “behavior”, how many were correct? * TP/(TP+FP) 3. Recall: Of the ground truths labeled “behavior”, how many did the
classifier predict? * TP/(TP+FN) 4. F-beta (F1, F-score): Harmonic mean of precision and recall * 2 * (Pr * Re)/(Pr+Re)


Question 7

Complete the definitions of the confusion matrix and the performance metrics below Solution[#10]


[20]:





# Routine for evaluating the classifier performance
def eval_classifier_performance(classifier, features, labels, print_results=True):
    # Predict on held-out set
    predictions = classifier.predict(features)
    # Accuracy
    acc = np.mean(predictions == labels)
    # Confusion matrix values for a binary classifier
    tp_count = np.sum(np.logical_and(predictions==1, labels==1))
    tn_count =
    fp_count =
    fn_count =
    # Calculate other metrics
    # Of the predictions we made, how many were correct
    precision =
    # Of the things we were looking for, how many did we find
    recall =
    # Harmonic mean of Pr and Re
    f1 = 2*(precision * recall)/(precision + recall)
    if print_results:
        print('Accuracy: ' + str(acc))
        print('Precision: ' + str(precision))
        print('Recall: ' + str(recall))
        print('F1-score: ' + str(f1))
    # We can also show that sklearn has tools for providing these metrics
    # Note that we've calculated the "precision" and "recall" for the behavior (value == 1)
    # print(sklearn.metrics.classification_report(labels, predictions))
    # Manually obtaining each
    # sklearn.metrics.precision_score(labels, predictions)
    # sklearn.metrics.recall_score(labels, predictions)
    # sklearn.metrics.f1_score(labels, predictions)
    return acc, precision, recall, f1













  File "/tmp/ipykernel_974/3323323347.py", line 9
    tn_count =
               ^
SyntaxError: invalid syntax










Step 7

Run through the steps: 1. Split the training data into train/valid 2. Train a classifier on the train portion of the split 3. Evaluate the classifier


[21]:





# Step 1: Split the data into train/valid
train_features, train_labels, valid_features, valid_labels = random_split_data(all_features, all_labels)
# Train a classifier
dt_classifier = train_dt_classifier(train_features, train_labels)
# Evaluate the classifier
eval_classifier_performance(dt_classifier, valid_features, valid_labels)
# Repeat these steps to test how different parameters influence performance













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/756810110.py in <module>
      1 # Step 1: Split the data into train/valid
----> 2 train_features, train_labels, valid_features, valid_labels = random_split_data(all_features, all_labels)
      3 # Train a classifier
      4 dt_classifier = train_dt_classifier(train_features, train_labels)
      5 # Evaluate the classifier

NameError: name 'all_features' is not defined








Experiment 3

See performance of different classifiers and sampling strategies


[22]:





# Sampling options:
# Random split
#train_features, train_labels, valid_features, valid_labels = random_split_data(all_features, all_labels)
# Stratified split
#train_features, train_labels, valid_features, valid_labels =sklearn_stratified_split(all_features, all_labels)
# Leave one group out split (bout)
#train_features, train_labels, valid_features, valid_labels = sklearn_logo_split(all_features, all_labels, bout_data)
# Leave one group out split (animal)
#train_features, train_labels, valid_features, valid_labels = sklearn_logo_split(all_features, all_labels, annotation_animal)
# Leave multiple groups out (bouts)
#train_features, train_labels, valid_features, valid_labels = sklearn_group_split(all_features, all_labels, bout_data)
# Leave multiple groups out (animals)
#train_features, train_labels, valid_features, valid_labels = sklearn_group_split(all_features, all_labels, annotation_animal)
# Example with extra step for balanced labels + group sampling
balanced_features, balanced_labels, balanced_groups = downsample_balanced(all_features, all_labels, annotation_animal)
train_features, train_labels, valid_features, valid_labels = sklearn_group_split(balanced_features, balanced_labels, balanced_groups)

# Classifier options:
# Decision Tree
#classifier = train_dt_classifier(train_features, train_labels)
# Ada Boost
#classifier = train_ada_classifier(train_features, train_labels)
# Random Forest
classifier = train_rf_classifier(train_features, train_labels)

# Run the evaluation!
eval_classifier_performance(classifier, valid_features, valid_labels)













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/3810372599.py in <module>
     13 #train_features, train_labels, valid_features, valid_labels = sklearn_group_split(all_features, all_labels, annotation_animal)
     14 # Example with extra step for balanced labels + group sampling
---> 15 balanced_features, balanced_labels, balanced_groups = downsample_balanced(all_features, all_labels, annotation_animal)
     16 train_features, train_labels, valid_features, valid_labels = sklearn_group_split(balanced_features, balanced_labels, balanced_groups)
     17

NameError: name 'all_features' is not defined








Experiment 4

Expand the search of parameters by also adjusting the parameters of the model, eg the number of trees in the random forest.

We provide an example structure for looping through 10 training splits for the decision tree classifier.

Suggested tests: 1. Change the classifier type 2. Change the train/valid split approach 3. Include balanced data 4. Test various parameters of the classifier


[23]:





all_results = []
# random splits
for test_model in np.arange(10):
    train_features, train_labels, valid_features, valid_labels = random_split_data(all_features, all_labels)
    dt_classifier = train_dt_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(dt_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['decision tree'], 'split_method':['random'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))
    ada_classifier = train_ada_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(ada_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['ada boost'], 'split_method':['random'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))
    rf_classifier = train_rf_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(rf_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['random forest'], 'split_method':['random'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))

# leave bouts out splits
for test_model in np.arange(10):
    train_features, train_labels, valid_features, valid_labels = sklearn_group_split(all_features, all_labels, bout_data)
    dt_classifier = train_dt_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(dt_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['decision tree'], 'split_method':['leave bouts out'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))
    ada_classifier = train_ada_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(ada_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['ada boost'], 'split_method':['leave bouts out'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))
    rf_classifier = train_rf_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(rf_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['random forest'], 'split_method':['leave bouts out'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))

# leave animals out splits
for test_model in np.arange(10):
    train_features, train_labels, valid_features, valid_labels = sklearn_group_split(all_features, all_labels, annotation_animal)
    dt_classifier = train_dt_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(dt_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['decision tree'], 'split_method':['leave animal out'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))
    ada_classifier = train_ada_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(ada_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['ada boost'], 'split_method':['leave animal out'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))
    rf_classifier = train_rf_classifier(train_features, train_labels)
    acc, pr, re, f1 = eval_classifier_performance(rf_classifier, valid_features, valid_labels, print_results=False)
    all_results.append(pd.DataFrame({'classifier':['random forest'], 'split_method':['leave animal out'], 'accuracy':[acc], 'precision':[pr], 'recall':[re], 'f1':[f1]}))

# Flatten the list of dataframes into one
results_df = pd.concat(all_results)













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/2129066006.py in <module>
      2 # random splits
      3 for test_model in np.arange(10):
----> 4     train_features, train_labels, valid_features, valid_labels = random_split_data(all_features, all_labels)
      5     dt_classifier = train_dt_classifier(train_features, train_labels)
      6     acc, pr, re, f1 = eval_classifier_performance(dt_classifier, valid_features, valid_labels, print_results=False)

NameError: name 'all_features' is not defined






Inspect the results of your scan(s)


[24]:





melted_df = pd.melt(results_df, id_vars = ['classifier','split_method'], value_vars = ['accuracy','precision','recall','f1'])
performance_plot = p9.ggplot(data=melted_df) + \
    p9.geom_point(p9.aes(x='classifier', y='value', color='variable'), position=p9.position_dodge(width=0.4)) + \
    p9.facet_wrap('split_method') + \
    p9.labs(title='Classifier accuracy', x='Classifier type', y='Metric') + \
    p9.theme_bw()

performance_plot.draw().show()













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/2733555512.py in <module>
----> 1 melted_df = pd.melt(results_df, id_vars = ['classifier','split_method'], value_vars = ['accuracy','precision','recall','f1'])
      2 performance_plot = p9.ggplot(data=melted_df) + \
      3     p9.geom_point(p9.aes(x='classifier', y='value', color='variable'), position=p9.position_dodge(width=0.4)) + \
      4     p9.facet_wrap('split_method') + \
      5     p9.labs(title='Classifier accuracy', x='Classifier type', y='Metric') + \

NameError: name 'results_df' is not defined








Step 8

Evaluate your best classifier on the held-out test dataset

You could also potentially just train a classifier on the entire training set (after you’ve tuned the numbers with the validation set)


[25]:





#best_classifier = dt_classifier
best_classifier = train_rf_classifier(all_features, all_labels)
eval_classifier_performance(best_classifier, test_features, test_labels)













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/3214929395.py in <module>
      1 #best_classifier = dt_classifier
----> 2 best_classifier = train_rf_classifier(all_features, all_labels)
      3 eval_classifier_performance(best_classifier, test_features, test_labels)

NameError: name 'all_features' is not defined






You may observe that performance has dropped a bit, but if you selected the correct train/valid split approach and didn’t over-fit on your validation data, it should still perform well.



Discussion 2

Up until now, we’ve been focussing on frame-level agreement, which is simple enough for training classifiers.

Are there better ways to evaluate performance of a behavior classifier?

Discussion Notes[#11]



Step 9

Bout-level agreement on dense annotation

In order to measure bout-level agreement, we need to transform the data into starts and ends

We can either write the detection of bouts within predictions manually or re-use a classical compression algorithm called run length encoding

Note that typical RLE algorithms will encode all states (both “behavior” and “not-behavior”), while we primarily care about only 1 of the 2 states.


[26]:





# Run length encoding, implemented using numpy
# Accepts a 1d vector
# Returns a tuple containing (starts, durations, values)
def rle(inarray):
    ia = np.asarray(inarray)
    n = len(ia)
    if n == 0:
        return (None, None, None)
    else:
        y = ia[1:] != ia[:-1]
        i = np.append(np.where(y), n - 1)
        z = np.diff(np.append(-1, i))
        p = np.cumsum(np.append(0, z))[:-1]
        return(p, z, ia[i])







Use the RLE algorithm to encode predictions

We also need to separate the data by animal, because bouts can only exist within animal


[27]:





test_predictions = best_classifier.predict(test_features)

# Arrays to store the list of bouts by animal
all_pr_bouts = []
all_gt_bouts = []
# Loop over each animal and add their bouts to the lists
for animal_id in np.unique(test_animals):
    animal_indices = test_animals==animal_id
    test_bout_predictions = rle(test_predictions[animal_indices])
    # Only store the bouts of behavior
    behavior_bouts = test_bout_predictions[2]==1
    if np.any(behavior_bouts):
        test_bout_predictions = (test_bout_predictions[0][behavior_bouts], test_bout_predictions[1][behavior_bouts])
        all_pr_bouts.append(test_bout_predictions)
    else:
        all_pr_bouts.append(([],[]))
    test_bout_gt = rle(test_labels[animal_indices])
    # Only store the bouts of behavior
    behavior_bouts = test_bout_gt[2]==1
    if np.any(behavior_bouts):
        test_bout_gt = (test_bout_gt[0][behavior_bouts], test_bout_gt[1][behavior_bouts])
        all_gt_bouts.append(test_bout_gt)
    else:
        all_gt_bouts.append(([],[]))













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/3443521078.py in <module>
----> 1 test_predictions = best_classifier.predict(test_features)
      2
      3 # Arrays to store the list of bouts by animal
      4 all_pr_bouts = []
      5 all_gt_bouts = []

NameError: name 'best_classifier' is not defined






Display the predictions next to their GT


[28]:





bout_data = []
for animal_idx, animal_id in enumerate(np.unique(test_animals)):
    gt_bout_data = all_gt_bouts[animal_idx]
    if len(gt_bout_data[0])>0:
        gt_bout_df = pd.DataFrame({'state':'GT', 'animal':animal_id, 'animal_idx':animal_idx, 'start_time':gt_bout_data[0], 'end_time':gt_bout_data[0]+gt_bout_data[1]})
        bout_data.append(gt_bout_df)
    pr_bout_data = all_pr_bouts[animal_idx]
    if len(pr_bout_data[0])>0:
        pr_bout_df = pd.DataFrame({'state':'PR', 'animal':animal_id, 'animal_idx':animal_idx, 'start_time':pr_bout_data[0], 'end_time':pr_bout_data[0]+pr_bout_data[1]})
        bout_data.append(pr_bout_df)

bout_data = pd.concat(bout_data)
bout_plot = p9.ggplot(bout_data) + \
    p9.geom_rect(p9.aes(xmin='start_time', xmax='end_time', ymin='animal_idx-0.25', ymax='animal_idx+0.25', fill='factor(state)'), alpha=0.5) + \
    p9.labs(title='Bout annotations and predictions', x='Time, frame', y='Animal index', fill='State') + \
    p9.theme_bw()

bout_plot.draw().show()













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/4085905827.py in <module>
      1 bout_data = []
----> 2 for animal_idx, animal_id in enumerate(np.unique(test_animals)):
      3     gt_bout_data = all_gt_bouts[animal_idx]
      4     if len(gt_bout_data[0])>0:
      5         gt_bout_df = pd.DataFrame({'state':'GT', 'animal':animal_id, 'animal_idx':animal_idx, 'start_time':gt_bout_data[0], 'end_time':gt_bout_data[0]+gt_bout_data[1]})

NameError: name 'test_animals' is not defined








Step 10

Strategies for evaluating performance of bout-based metrics

Since predictions are almost never going to be identical to the ground truth, we need to adjust our strategy for calling correct and incorrect classifications of the confusion matrix. To do this, we should attempt to detect how much the predictions overlap.

In classical image processing, this was done via calculating the intersection over union (IoU) between predictions and ground truth. We can adopt the same technique for our 1-D problem (time).


[29]:





# Calculates the intersection of 2 bouts
# Each bout is a tuple of (start, duration)
def calculate_intersection(gt_bout, pr_bout):
    # Detect the larger of the 2 start times
    max_start_time = np.max([gt_bout[0], pr_bout[0]])
    # Detect the smaller of the 2 end times
    gt_bout_end = gt_bout[0]+gt_bout[1]
    pr_bout_end = pr_bout[0]+pr_bout[1]
    min_end_time = np.min([gt_bout_end, pr_bout_end])
    # Detect if the 2 bouts intersected at all
    if max_start_time < min_end_time:
        return min_end_time-max_start_time
    else:
        return 0

# Calculates the union of 2 bouts
# Each bout is a tuple of (start, duration)
def calculate_union(gt_bout, pr_bout):
    # If the 2 don't intersect, we can just sum up the durations
    if calculate_intersection(gt_bout, pr_bout) == 0:
        return gt_bout[1] + pr_bout[1]
    # They do intersect
    else:
        min_start_time = np.min([gt_bout[0], pr_bout[0]])
        gt_bout_end = gt_bout[0]+gt_bout[1]
        pr_bout_end = pr_bout[0]+pr_bout[1]
        max_end_time = np.max([gt_bout_end, pr_bout_end])
        return max_end_time - min_start_time









[30]:





all_intersections = []
all_unions = []
all_ious = []

# Loop over the animals again
num_test_animals = len(np.unique(test_animals))
for animal_idx in np.arange(num_test_animals):
    # For each animal, we want a matrix of intersections, unions, and ious
    num_gt_bouts = len(all_gt_bouts[animal_idx][0])
    num_pr_bouts = len(all_pr_bouts[animal_idx][0])
    animal_intersection_mat = np.zeros([num_gt_bouts, num_pr_bouts])
    animal_union_mat = np.zeros([num_gt_bouts, num_pr_bouts])
    # Do a second loop for each GT bout
    for gt_idx in np.arange(num_gt_bouts):
        gt_bout = [all_gt_bouts[animal_idx][0][gt_idx], all_gt_bouts[animal_idx][1][gt_idx]]
        # Final loop for each proposed bout
        for pr_idx in np.arange(num_pr_bouts):
            pr_bout = [all_pr_bouts[animal_idx][0][pr_idx], all_pr_bouts[animal_idx][1][pr_idx]]
            # Calculate the intersections, unions, and IoUs
            animal_intersection_mat[gt_idx, pr_idx] = calculate_intersection(gt_bout, pr_bout)
            animal_union_mat[gt_idx, pr_idx] = calculate_union(gt_bout, pr_bout)
    # The IoU matrix will just be i / u
    animal_iou_mat = animal_intersection_mat/animal_union_mat
    # Add the animal data to the resulting lists
    all_intersections.append(animal_intersection_mat)
    all_unions.append(animal_union_mat)
    all_ious.append(animal_iou_mat)













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/736030154.py in <module>
      4
      5 # Loop over the animals again
----> 6 num_test_animals = len(np.unique(test_animals))
      7 for animal_idx in np.arange(num_test_animals):
      8     # For each animal, we want a matrix of intersections, unions, and ious

NameError: name 'test_animals' is not defined






Now that we have IoUs, we can try and apply thresholds for calculating things like precision/recall Since it’s hard to define “True Negatives” with the IoU technique, we can skip that for now


[31]:





# Define detection metrics, given a IoU threshold
def calc_temporal_iou_metrics(iou_data, threshold):
    tp_counts = 0
    fn_counts = 0
    fp_counts = 0
    for cur_iou_mat in iou_data:
        tp_counts += np.sum(np.any(cur_iou_mat>threshold, axis=1))
        fn_counts += np.sum(np.all(cur_iou_mat<threshold, axis=1))
        fp_counts += np.sum(np.all(cur_iou_mat<threshold, axis=0))
    precision = tp_counts/(tp_counts + fp_counts)
    recall = tp_counts/(tp_counts + fn_counts)
    f1 = 2*(precision * recall)/(precision + recall)
    return precision, recall, f1








[32]:





all_iou_results = []

ious_to_evaluate = all_ious

for cur_iou in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
    performance = calc_temporal_iou_metrics(ious_to_evaluate, cur_iou)
    all_iou_results.append(pd.DataFrame({'iou_threshold':[cur_iou], 'precision':[performance[0]], 'recall':[performance[1]], 'f1':[performance[2]]}))

iou_df = pd.concat(all_iou_results)
iou_df = pd.melt(iou_df, id_vars = ['iou_threshold'], value_vars = ['precision','recall','f1'])

iou_plot = p9.ggplot(iou_df) + \
    p9.geom_line(p9.aes(x='iou_threshold', y='value', color='factor(variable)')) + \
    p9.theme_bw()

iou_plot.draw().show()













---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
/tmp/ipykernel_974/921507759.py in <module>
      4
      5 for cur_iou in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
----> 6     performance = calc_temporal_iou_metrics(ious_to_evaluate, cur_iou)
      7     all_iou_results.append(pd.DataFrame({'iou_threshold':[cur_iou], 'precision':[performance[0]], 'recall':[performance[1]], 'f1':[performance[2]]}))
      8

/tmp/ipykernel_974/705747350.py in calc_temporal_iou_metrics(iou_data, threshold)
      8         fn_counts += np.sum(np.all(cur_iou_mat<threshold, axis=1))
      9         fp_counts += np.sum(np.all(cur_iou_mat<threshold, axis=0))
---> 10     precision = tp_counts/(tp_counts + fp_counts)
     11     recall = tp_counts/(tp_counts + fn_counts)
     12     f1 = 2*(precision * recall)/(precision + recall)

ZeroDivisionError: division by zero








Discussion 3

Pros and Cons to bout based analysis

False positives are overestimated, because there may be multiple predicted bouts within 1 real bout.

Are there potential methods to try and fix this issue?

Discussion Notes[#12]



Step 11

Post-processing techniques


[33]:





def merge_behavior_gaps(bout_starts, bout_durations, bout_states, max_gap_size, state_to_merge = False):
    gaps_to_remove = np.logical_and(bout_states==state_to_merge, bout_durations<max_gap_size)
    new_durations = np.copy(bout_durations)
    new_starts = np.copy(bout_starts)
    new_states = np.copy(bout_states)
    if np.any(gaps_to_remove):
        # Go through backwards removing gaps
        for cur_gap in np.where(gaps_to_remove)[0][::-1]:
            # Nothing earlier or later to join together, ignore
            if cur_gap == 0 or cur_gap == len(new_durations)-1:
                pass
            else:
                cur_duration = np.sum(new_durations[cur_gap-1:cur_gap+2])
                new_durations[cur_gap-1] = cur_duration
                new_durations = np.delete(new_durations, [cur_gap, cur_gap+1])
                new_starts = np.delete(new_starts, [cur_gap, cur_gap+1])
                new_states = np.delete(new_states, [cur_gap, cur_gap+1])
    return new_starts, new_durations, new_states









Experiment 5

Test performance across multiple filtering parameters Run the next 2 cells and change the 2 variables at the top to be more/less stringent on bouts


[34]:





# Filter out short bouts
min_bout_duration = 9
# Remove short breaks in bouts
min_gap_duration = 5

filtered_pr_bouts = []
for animal_id in np.unique(test_animals):
    animal_indices = test_animals==animal_id
    raw_bout_predictions = rle(test_predictions[animal_indices])
    # Remove short breaks in bouts
    filtered_bout_predictions = merge_behavior_gaps(raw_bout_predictions[0], raw_bout_predictions[1], raw_bout_predictions[2], min_bout_duration, state_to_merge=False)
    # Filter out short bouts
    filtered_bout_predictions = merge_behavior_gaps(filtered_bout_predictions[0], filtered_bout_predictions[1], filtered_bout_predictions[2], min_bout_duration, state_to_merge=True)
    behavior_bouts = filtered_bout_predictions[2]==1
    if np.any(behavior_bouts):
        filtered_bout_predictions = (filtered_bout_predictions[0][behavior_bouts], filtered_bout_predictions[1][behavior_bouts])
        filtered_pr_bouts.append(filtered_bout_predictions)
    else:
        filtered_pr_bouts.append(([],[]))

filtered_intersections = []
filtered_unions = []
filtered_ious = []

# Loop over the animals again
num_test_animals = len(np.unique(test_animals))
for animal_idx in np.arange(num_test_animals):
    # For each animal, we want a matrix of intersections, unions, and ious
    num_gt_bouts = len(all_gt_bouts[animal_idx][0])
    num_pr_bouts = len(filtered_pr_bouts[animal_idx][0])
    animal_intersection_mat = np.zeros([num_gt_bouts, num_pr_bouts])
    animal_union_mat = np.zeros([num_gt_bouts, num_pr_bouts])
    # Do a second loop for each GT bout
    for gt_idx in np.arange(num_gt_bouts):
        gt_bout = [all_gt_bouts[animal_idx][0][gt_idx], all_gt_bouts[animal_idx][1][gt_idx]]
        # Final loop for each proposed bout
        for pr_idx in np.arange(num_pr_bouts):
            pr_bout = [filtered_pr_bouts[animal_idx][0][pr_idx], filtered_pr_bouts[animal_idx][1][pr_idx]]
            # Calculate the intersections, unions, and IoUs
            animal_intersection_mat[gt_idx, pr_idx] = calculate_intersection(gt_bout, pr_bout)
            animal_union_mat[gt_idx, pr_idx] = calculate_union(gt_bout, pr_bout)
    # The IoU matrix will just be i / u
    animal_iou_mat = animal_intersection_mat/animal_union_mat
    # Add the animal data to the resulting lists
    filtered_intersections.append(animal_intersection_mat)
    filtered_unions.append(animal_union_mat)
    filtered_ious.append(animal_iou_mat)













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/1790789414.py in <module>
      5
      6 filtered_pr_bouts = []
----> 7 for animal_id in np.unique(test_animals):
      8     animal_indices = test_animals==animal_id
      9     raw_bout_predictions = rle(test_predictions[animal_indices])

NameError: name 'test_animals' is not defined






Plot the performance with post-processing!


[35]:





all_iou_results = []

for cur_iou in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
    performance = calc_temporal_iou_metrics(filtered_ious, cur_iou)
    all_iou_results.append(pd.DataFrame({'iou_threshold':[cur_iou], 'precision':[performance[0]], 'recall':[performance[1]], 'f1':[performance[2]]}))

iou_df_filtered = pd.concat(all_iou_results)
iou_df_filtered = pd.melt(iou_df_filtered, id_vars = ['iou_threshold'], value_vars = ['precision','recall','f1'])

iou_df_filtered['filtered'] = True
iou_df['filtered'] = False
iou_df_filtered = pd.concat([iou_df_filtered, iou_df])


iou_plot = p9.ggplot(iou_df_filtered) + \
    p9.geom_line(p9.aes(x='iou_threshold', y='value', color='filtered')) + \
    p9.facet_wrap('variable') + \
    p9.theme_bw()


iou_plot.draw().show()













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/2923317320.py in <module>
      2
      3 for cur_iou in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
----> 4     performance = calc_temporal_iou_metrics(filtered_ious, cur_iou)
      5     all_iou_results.append(pd.DataFrame({'iou_threshold':[cur_iou], 'precision':[performance[0]], 'recall':[performance[1]], 'f1':[performance[2]]}))
      6

NameError: name 'filtered_ious' is not defined







[36]:





bout_data = []
for animal_idx, animal_id in enumerate(np.unique(test_animals)):
    gt_bout_data = all_gt_bouts[animal_idx]
    if len(gt_bout_data[0])>0:
        gt_bout_df = pd.DataFrame({'state':'GT', 'animal':animal_id, 'animal_idx':animal_idx, 'start_time':gt_bout_data[0], 'end_time':gt_bout_data[0]+gt_bout_data[1]})
        bout_data.append(gt_bout_df)
    pr_bout_data = filtered_pr_bouts[animal_idx]
    if len(pr_bout_data[0])>0:
        pr_bout_df = pd.DataFrame({'state':'PR', 'animal':animal_id, 'animal_idx':animal_idx, 'start_time':pr_bout_data[0], 'end_time':pr_bout_data[0]+pr_bout_data[1]})
        bout_data.append(pr_bout_df)

bout_data = pd.concat(bout_data)
bout_plot = p9.ggplot(bout_data) + \
    p9.geom_rect(p9.aes(xmin='start_time', xmax='end_time', ymin='animal_idx-0.25', ymax='animal_idx+0.25', fill='factor(state)'), alpha=0.5) + \
    p9.labs(title='Bout annotations and predictions', x='Time, frame', y='Animal index', fill='State') + \
    p9.theme_bw()

bout_plot.draw().show()













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
/tmp/ipykernel_974/13303985.py in <module>
      1 bout_data = []
----> 2 for animal_idx, animal_id in enumerate(np.unique(test_animals)):
      3     gt_bout_data = all_gt_bouts[animal_idx]
      4     if len(gt_bout_data[0])>0:
      5         gt_bout_df = pd.DataFrame({'state':'GT', 'animal':animal_id, 'animal_idx':animal_idx, 'start_time':gt_bout_data[0], 'end_time':gt_bout_data[0]+gt_bout_data[1]})

NameError: name 'test_animals' is not defined








Footnotes



[#1]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Question-1



[#2]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Question-2



[#3]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Question-3-4



[#4]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Discussion-1



[#5]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Question-5



[#6]
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn-ensemble-adaboostclassifier



[#7]
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn-ensemble-randomforestclassifier



[#8]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Question-6



[#9]
https://en.wikipedia.org/wiki/Precision_and_recall



[#10]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Question-7



[#11]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Discussion-2



[#12]
http://localhost:8888/notebooks/ML-Course-2022-JABS_SOLUTIONS.ipynb#Discussion-3
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JABS Tutorial



Purpose/Expectations

The contents of this course will grant insight into important characteristics while trainig behavioral classifiers. The usage of JABS code in this tutorial is strictly limited to reading in project annotations and feature vectors.

Within this tutorial, you will be provided with 2 example annotated projects that contain sparse labels that will be used for training and dense labels that you will use for final evaluation of your best model.

Expected knowledge before coming doing the course * Familiarity with animal pose data and frame-level features derived from that data * Basic python experience * Some numpy experience * Familiarity with generating plots in python (preference to using plotnine, which is ggplot-style syntax)

Please feel free to use the “solution” links when the programming experience is above your knowledge.

Expected takeaways of the course * Learn the core process to train a frame-wise predictor of behavior * Become familiar with key components to take into account when training these types of classifiers * Gain insight for some of the design decision considerations our group integrated into the JABS software


Step 0

Import a lot of libraries that we will be using in this tutorial


[1]:





import numpy as np
import pandas as pd
from itertools import chain
import sklearn
# JABS install directory
import sys
sys.path.append('JABS-behavior-classifier/')
from src.project import Project
from src.classifier import Classifier
# Plotting library
import plotnine as p9
%matplotlib notebook













/home/bgeuther/jupyter/environment/lib/python3.8/site-packages/xgboost/compat.py:93: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index








Step 1

Import the project annotations that we are providing These annotations were created using our JABS software, so we can use that library to extract the annotations in python


[2]:





project = Project('JABS-Training-Data/')
# We're picking the first behavior in the project. Each JABS project can contain multiple behavior annotations.
behavior = project.load_metadata()['behaviors'][0]
# Here we read in the all important information for all labels
training_data = project.get_labeled_features(behavior, window_size=5, use_social_features=True)
# Since this is more of an internal format, we can separate out the data to be more easily accessible
all_labels = training_data[0]['labels']
annotation_animal = training_data[0]['groups']
annotation_animal_names = [training_data[1][x]['video'] + ' animal ' + str(training_data[1][x]['identity']) for x in annotation_animal]
feature_names = training_data[0]['column_names']
all_features = Classifier().combine_data(training_data[0]['per_frame'],training_data[0]['window'])







Also extract some bout-level groups, something that JABS doesn’t normally do


[3]:





raw_annotations = [project.load_video_labels(training_data[1][x]['video']).as_dict()['labels'][str(training_data[1][x]['identity'])][behavior] for x in np.unique(annotation_animal)]
num_animals_annotated = len(raw_annotations)
bout_data = [[np.repeat(animal_idx+bout_idx*num_animals_annotated, bout['end']-bout['start']+1) for bout_idx, bout in enumerate(animal_data)] for animal_idx, animal_data in enumerate(raw_annotations)]
bout_data = np.concatenate(list(chain.from_iterable(bout_data)))







At this point we have extracted feature data and annotations from a JABS project. Here’s a description of important variables: * all_features contains the matrix of all the features. The first dimension is the frame index and the second dimension is the feature index. * all_labels contains a vector of labels. 0 = not behavior, 1 = behavior * annotation_animal contains a vector with a unique number for each animal * bout_data contains a vector with a unique bout number for
each bout annotated * feature_names contains the name of each feature. Each value here is the name of the 2nd dimension of the feature vector.



Step 2

Read in the held-out test set

This set is distinct from the validation dataset we’ll be splitting in 2 key factors: 1. This set will be held out and should not be used in tuning model parameters. 2. It is also densely annotated (all frames contain a label), rather than the sparse annotation provided for training.


[4]:





test_project = Project('JABS-Test-Data/')
test_data = test_project.get_labeled_features(behavior, window_size=5, use_social_features=True)
test_labels = test_data[0]['labels']
test_animals = test_data[0]['groups']
test_features = Classifier().combine_data(test_data[0]['per_frame'],test_data[0]['window'])









Step 3

Inspect characteristics of the dataset Since the annotations are located in all_labels, we should inspect some characteristics of it


Question 1

How many annotations do we have? Solution[#1]


[5]:





print(len(all_labels))













3407








Question 2

How many labels do we have of each class: 0 (not-behavior) and 1 (behavior) Solution[#2]


[6]:





num_not_behavior = sum(all_labels==0)
print(num_not_behavior)
num_behavior = sum(all_labels==1)
print(num_behavior)













2294
1113








Question 3-4

How many bouts were annotated?

How many animals were annotated? Solution[#3]


[7]:





num_bouts = len(np.unique(bout_data))
print(num_bouts)
num_animals = len(np.unique(annotation_animal))
print(num_animals)













235
21









Discussion 1

What are characteristics of the dataset that may be important about creating a good model?

Hypotheticals to think about: * If you have a rare behavior, is it okay to label a lot more “not behavior”? What might the model try and do to improve accuracy if that ratio becomes 1000:1? * If one animal tends to express the behavior more than another, is it okay to provide more labels on from that individual?

Discussion Notes[#4]

Discussion on the balancing of data

Rules of thumb: * Balanced annotations tend to create better classifiers. The higher the degree of imbalance, the more likely the classifier will just cheat and learn to predict one state over another. Generally, you should aim to not have more than a 2:1 ratio, but performance only particularly degrades when worse than a 5:1 or 10:1 ratio. Re-sampling can address this. * More bouts is generally better, because within-bout annotations have high temporal correlation and are therefore less
informative for making decisions that generalize in favor of making decisions specific to that bout. * More animals is generally better, because some animals may express behavior in a more unique style. Having more animals enables better generalization. We’ve observed in the past that limiting to specific strains of animals in training hurts generalization to different strains. This keys in on adequately sampling from the population variation of the experiments you plan on running inferences on
- include at least some of each genotype.



Extra visualizations of the dataset


[8]:





plotting_df = pd.DataFrame({'annotations':all_labels, 'bout':bout_data, 'animal':annotation_animal, 'annotation_idx':np.arange(len(all_labels))})
# Histogram of the class labels
plot_labels = p9.ggplot() + \
        p9.geom_histogram(mapping=p9.aes(x='factor(annotations)'), data=plotting_df, bins=2, fill='#9e9e9e', color='#000000', size=2) + \
        p9.labs(title='Class Labels', x='Class', y='Count') + \
        p9.scale_x_discrete(labels=['Not-Behavior',behavior]) + \
        p9.theme_bw()
plot_labels.draw